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1 Systems Large and Small 
We are surrounded by (and indeed composed of) small systems-surfaces, bubbles, 
drops, colloids, emulsions, cells, membranes etc.-yet statistical mechanics, our 
principal theoretical tool for understanding the physical properties of matter at a 
molecular level is almost entirely the theory of the behaviour of infinitely large 
systems. Thus from any elementary text-book of thermodynamics we learn that the 
isotherm that connects the orthobaric states of a liquid and its vapour is a straight 
horizontal line of constant pressure, equal to the saturated vapour pressure (Figure 
1).  This result is strictly true, however, only in an infinitely large, and therefore, as 

t 
P 

P -  
Figure 1 The pressure as a function of density in a system at a j x e d  temperature. Only if the 
system is injinitely large is the central part of the isotherm, p ,  , truly horizontal, and the junctions 
at its ends sharp 

I shall argue, in an essentially uniform system. Clearly we need to extend our 
theoretical understanding if we are to explain at a molecular level the behaviour of 
the real finite world. 

Progress towards this goal has been fitful. A key step was taken at the end of the 
nineteenth century by Rayleigh and van der Waals, but it is only recently that real 
progress has been made and the subject put on foundations which, although not 
entirely solid, are now sufficiently firm for many of our purposes. 

* Based on the Faraday Lecture, given at Imperial College, London, on 10th March 1983 
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Let us start by looking more closely at the proposition that an arbitrarily large 
system is a uniform system, even if it comprises more than one phase. Consider a 
system (the grand-canonical ensemble of statistical mechanics) specified by its 
volume, to give it a scale, and by the two thermodynamic fields,’ temperature and 
chemical potential, T and y. (We assume for simplicity that the system has only one 
component.) If the temperature is not too high there will be some value of ,u, say 
y ’ ~ ~ ,  at which the system changes from liquid to gas. If y > p l y g  the system will be 
entirely liquid. The number of molecules is not fixed but fluctuates about some 
average value, N ,  by an amount of order N1/2. Thus if V ,  and hence N ,  become 
sufficiently large the relative fluctuations of N become negligibly small. Similarly if 
y < y’*g the system is entirely gas, and the fluctuations are again negligibly small. 
If y = ,dg exactly then the system contains either liquid or gas or an arbitrary 
mixture of them. The fluctuations in N are of order N ,  and so never small. The 
gas-liquid surface is entirely undefined in such a system which, although two- 
phase, is essentially uniform. 

To produce a non-uniform system we must apply a non-uniform external field 
that has a potential u(r) at point r, for example a gravitational potential, 
u(z )  = mg(z - z o )  where m is the mass of a molecule and z - zo the height above 
some datum zo . The state of equilibrium in the system is specified by the condition 
that the externally fixed potential p is constant where 

P = 44  + 4.) 
Here p(r) ,  which is defined by this equation as the difference of y and u(r), is the 
intrinsic chemical potential at point r ;  a molecular interpretation of this is given 
below. To a first approximation in an inhomogeneous system it is just the potential 
of a homogeneous fluid of density equal to that prevailing at r. That is 

(1.1) 

P ( d  = h” 7-1 (1.2) 

where p ( r )  is the local density at r. We can use this result to see that if p = ,u”Ig 

then the gravitational field separates the system into two distinct phases, liquid for 
z < zo and gas for z > z o .  At z = zo there is a planar interface between liquid and 
gas, and in that interface (1.2) is not an adequate approximation. 

If u(r) is not constant then we have a non-uniform system; formally it is a 
‘small’ system since it is characterized by a finite scale of length determined by the 
variation of u with r .  This scale of length may, however, be so large that the system 
is hardly small in the conventional sense. Thus for nitrogen at 300K the 
characteristic length, kT/mg, is 9.0 km, or rather more than the height of Everest. 
Such a length is long compared with 5, the correlation length in a liquid which, 
except at the critical point, is equal to the range of the intermolecular forces, say 
1 nm. Under these circumstances (1.2), which we may call the point-thermodynamic 

For thermodynamics in terms ofjelds and densities, see R .  B. Griffiths and J. C. Wheeler, Phys. Rec.,  
1970, A2,1047; L. Mistura, Physica, l980,104A, 181; or, for an introduction, $4.7 of ref. 2, or Appendix 
1 of ref. 3. 

’ J.  S. Rowlinson and F. L. Swinton, ‘Liquids and Liquid Mixtures’, 3rd edn, Butterworth, London, 1982. 
J. S. Rowlinson and B. Widom, ‘Molecular Theory of Capillarity’, University Press, Oxford, 1982. 
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approximation, is valid; the properties of a substance in any phase are just those of 
that phase in the field-free homogeneous state appropriate to the prevailing density 
and temperature. The only condition in which (1.2) is invalid in an almost 
homogeneous system is near a gas-liquid critical point, where s' is no longer 
determined by the range of the forces, but diverges to an infinite length.4 A more 
important case of invalidity is in systems in which p ( r )  is itself varying on the scale 
of length of the intermolecular forces, and the best example of this is at the 
boundary between two phases, when even a weak symmetry-breaking potential, 
such as gravitation, induces enormous changes of density. For a liquid in 
equilibrium with its vapour near the triple point the change of density over 1 nm 
can be from 3 x lo4 mol m-3 to 30 mol m-3. Thus a molecule in the interface at, 
say, a local density of 3 x lo3 mol m- is influenced by the molecules in fluid at 
10-times higher density on one side and 100-times lower on the other. Similarly, 
v(r) arising from a solid phase, e.g. graphite or silica, has a range 5, and so induces 
similar gradients of density. For convenience I shall, however, use liquid-gas 
surfaces as the principal example in this review. 

What can we say of p ( r )  in such a situation? There is, fortunately, a formally exact 
expression for this potential, which shows clearly its non-local character, and which 
is well-adapted for calculation by computer simulation. I t  follows from Widom's 
potential distribution theorem5 that 

,u(r)/kT = ln[Ap(v)] - ln(exp[ - u ( r ) / k T ] )  (1.3) 

where A is the de Broglie wave length. The first term is the kinetic part of p ( r )  and is 
purely local. The second, the configurational part, is an unusual kind of canonical- 
ensemble average that can be described by the following thought-experiment. Take 
a system at equilibrium with a fixed number of molecules N in a fixed volume I/, but 
which may have any degree of inhomogeneity. Clamp the molecules in a typical 
configuration, add a ( N  + molecule at Y, and measure u( r ) ,  the increase in the 
configurational energy of the system. Withdraw the test molecule and let the system 
evolve to a new equilibrium molecular configuration. Clamp it again, and repeat 
the process. The average shown in (1.3) is the canonical average of the Boltzmann 
factors of the energies u(r).  This result is important because it is exact, operationally 
well-defined, and so computable, but it is an unusual form of statistical average and 
we consider later other approximate forms of this intrinsic potential. Note, 
however, that the construction of (1.3) implies that p ( r )  is non-local in character; 
that is, it is determined by the state of the system both at point r and at all positions 
within a distance 5 of r .  In this respect it differs from the (1.2), to which it reduces if 
the gradients go to zero, or become negligible on the scale of length of t. 

Let us see now if other thermodynamic functions can be ascribed to the fluid 
at point r .  

J .  V. Sengers and J .  M. J .  van Leeuwen, Physicu, 1982, 116A, 345. 
B. Widom, J .  Chem. Phys., 1963, 39, 2808; J .  Stat .  Phys., 1978, 19. 563; J .  Pkys.  Chrm., 1982. 
86, 869. 
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2 The Quasi-thermodynamic Assumption 
The assertion that it is possible to generate a unique or, at least, a useful and 
consistent set of thermodynamic functions for the material at a point in an 
inhomogeneous system is one that can be called the quasi-thermodynamic 
assumption. Ono and Kondo6 use that description for (1.2), called here the point- 
thermodynamic approximation, but we have seen that this is inadequate. The 
functions in which we might be interested include the three fields,' pressure, 
temperature, and chemical potential; 

P ( 4 .  TW7 and PL(Y) 

and the three densities, number density, energy density, and either entropy or free- 
energy density (we choose the latter); 

P ( 4  4M and w. 
The second group can be defined by describing about Y a small volume SV, which 
contains SN molecules, has an energy 6U and a free energy 6F. The three densities 
are thelimitsoftheratios6N/6V,6U/6V, and 6F/6V,  as SV shrinks tozero around 
the point Y. 

The simplest of these is p ( r )  for there can be no doubt about whether or not the 
centre of a molecule is in 6 V .  Number density is a one-body function and is always 
well-defined. (It is true that in some circumstances the fluctuations of p ( r )  in an 
interface can be comparable with the function itself, but that is a problem of a 
different kind.2*7) Since p(rj  is well-defined, so is T ( r ) ,  since temperature is simply a 
measure of the local density of kineticenergy, and this is again a one-body function. 
In fact, T ( r )  = T ,  a constant, in any system at equilibrium. We have seen that p ( r )  is 
also well-defined, but note that it is ,u of (l . l) ,  not p(r) ,  that is constant throughout 
a system at equilibrium. 

With p(r), 4(r) ,  and ~ ( r )  the position is more difficult. The difficulty is clearest 
with 4( r ) ,  for 6 U ,  the energy of a small sample of matter, is not uniquely defined. It is 
made up of the interactions of molecular pairs and larger groups, in which some of 
the molecules are within 6V and some are not. There is no unique way of deciding 
how much of this energy is to be ascribed to 6 V and how much to the surroundings. 
There is a similar problem with p(r )  which is the mean value of the negative of the 
stress across an element of area. In an inhomogeneous system pressure is a tensor 
p(r)  since the element can have different orientations with respect to the gradient of 
p(r) .  The stress has two parts, an isotropic kinetic part due to the momentum 
carried by the molecules, k T p ( r ) l ,  which is unambiguously defined, and a con- 
figurational or interaction part, which is not. As for 4 ( ~ ) ,  there is no unique way of 
deciding which intermolecular forces contribute to the stress across an element of 
area. 

At a planar interface the tensor has only two components, one normal to the 
surface and one parallel or transverse to it; both are functions only of height z,  and 
are denoted p N ( z )  and pT(z ) .  Mechanical equilibrium requires that p N ( z )  is a 

S. Ono and S. Kondo, in 'Encyclopedia of Physics', ed. S. Fliigge, Vol. 10, Springer. Berlin, 1960, p. 134. 
R. Evans, Mol. Phys.. 1981, 42, 1169. 
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constant; p N ( z )  = p' = p g  at a liquid surface, where p1 and p g  are the pressures in 
the liquid and gaseous phases. The transverse component is also equal to pl and p g  
well away from the interface, but is large and negative, and not uniquely defined in 
the interface itself. The most commonly used forms of p T ( z )  are those associated 
with the names of Irving and Kirkwood, and Harasima,8 but there are infinitely 
many other pos~ibilities.~ Figures 2 and 3 show the density profile p(z) and the two 

** zld 10 

Figure 2 The density p = Nd3/V as a function of distance z f o r  a sheet of liquid between two 
gas phases," at two temperatures, r = kTJE. The parameters d and E are the collision diameter 
and depth of a truncated Lennard-Jones (12,6) potential 

transverse components [pT(2)IIK and [pT(2)IH from a computer simulation of a film 
of a liquid about 15 molecular diameters thick." The intermolecular potential is a 
truncated Lennard-Jones (12,6) potential. The difference between the two forms is 
small but has one interesting feature; on the gas side of the interface in the IK 
version there is a small layer of fluid that is in weak compression, not in tension, 
since p r ( z )  > p N .  This feature cannot be seen in the H version. At higher 
temperatures it is seen in both, but is more prominent in the IK version. 

Although the energy density and the pressure are not defined uniquely, they must 
satisfy certain constraints, since measurable physical properties cannot depend on 
how we choose to describe them. Thus the total energy, U, and the excess energy 
associated with a surface, 4E, are measurable and so, whatever definition of + ( r )  
we choose, 

\ #(r)dr = u (2-1 1 

J.  H. Irving and J. G. Kirkwood, J .  Chem. Phys., 1950, 18, 817; A. Harasima. Adu. Chem. Phys., 
1958, 1,  203. 
P. Schofield and J .  R. Henderson, Proc. R .  SOC. London, Srr .  A,  1982, 379, 231; J .  R. Henderson and 
P. Schofield, ibid. 1982, 382, 21 1 .  

l o  J. P. R. B. Walton, D. J .  Tildesley, and J .  S. Rowlinson, Mol.  Phys., 1983,48, 1357. 
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L 
Figure 3 T h e  transcerse component of the pressure tensor, in units q f ~ / d ~ , j o r  the sheet qf liquid 
in Figure 2 (T = 0.72). The full line is p7.  according to the recipe qf Irving and Kirkwood, and 
the dashed line according to  that of Harasima. T h e  horizonai p a t  portions are in the 
homogeneous phases, where p7.  = p N  . The distances marked z ,  are the positions of the equimolar 
Gibbs surfaces, from Figure 2 

[ 4 ( z )  - @]dz + !-' [ 4 ( z )  - #]dz = 4E (2.2) 
zc - m  

where z ,  is the equimolar Gibbs dividing ~ u r f a c e , ~  and (6g and (6' are the 
unambiguous energy densities of gas and liquid. Similarly the zeroth moment of the 
difference p N  - p T  is the surface tension, 0, and so is invariant: 

However the first moment, which describes where the tension acts, or the surface of 
tension, z,, is not invariant to choice of pressure t e n ~ o r : ~ " ~  

(2.4) 
- w  

but ( z , ) ~ ~  # ( z ~ ) ~ .  The difference is small (Table l) ,  for the tension must act 'in' the 

Table 1 The surface of tension o (in units of c / d 2 )  and the surfaces of tension z ,  
(in units of d )  for a truncated Lennard-Jones liquid of collision diameter d ,  and 
potential depth E .  The subscripts stand for Irving-Kirkwood and Harasima" 

kT/E = 0.723 

kT/E = 1.013 
oIK = a H  = 0.237 

(2, - z , ) ~ K  = 2.7 
(ze  - Z,)" = 2.2 
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interface and so the uncertainty in z,  is less than 0.5 molecular diameter, with 
( z , ) , ~  lying on the liquid side of ( z ~ ) ~ .  This difference is smaller than the thickness 
of an interface, which is typically 3 molecular diameters or more. The conclusion is 
that z, is neither definable nor measurable from the pressure tensor with a precision 
greater than 5, which is the range of the intermolecular forces and also the thickness 
of the interface. 

The two invariants u and $ E  are related by a Gibbs-Helmholtz equation 

4' = (T - T(da/dT). (2.5) 

The remaining function is the free-energy density, $(r) ,  for which there is an 
apparently exact expression in terms of an infinite set of direct correlation 
functions," each of which must be known as a function of density from zero to 
p(r ) ,  a range which may include metastable states. An approximate but more 
accessible version of this is discussed below. The average Boltzmann factor in (1.3) 
can also be written in this form," or in a more compact but still inaccessible form12 
in terms of the total pair correlation function at all densities up to p(r) .  More useful 
approximations are again discussed later. Since $ may or may not be well-defined, 
but 4 is certainly not, it follows that there is no unique way of breaking $ down 
into an energy density and an entropy density in an inhomogeneous system. 

Let me close this section with a speculation on why T(r )  and p ( r )  are uniquely 
defined, but the third field of classical thermodynamics, p(r),  is not. In uniform 
multi-phase systems, p ,  T ,  and p enter symmetrically into the conditions of 
equilibrium. Any of them, or virtually any combination of them,' can be taken as 
the potential, the independent variable that can be expressed in terms of the other 
two fields. Thus we can write indifferently 

dp = -sdT + vdp 

or dp = VdT + pdp (2.6) 

or d(p/T) = - 4d( 1/T) + pd(p/T) etc. 

where s and u are the entropy and volume per mole and q is the entropy density. 
Nevertheless in inhomogeneous systems p plays a different role from T and p. The 
distinction is not between one-body and many-body functions, for T is one-body 
and p and p are many-body. Possibly it is related to the different tensorial rank of 
the three properties. In a fluid of spherical molecules their collisions are 
characterized by three conserved properties-conservation of mass, of energy, and 
of momentum, which are, respectively, a scalar, a scalar, and a vector. Away from 
equilibrium the flow of these quantities is governed by the size of the gradients of 
p (diffusion), of T (thermal conductivity), and ofp (viscosity). Since momentum is a 
vector, p is a tensor, and there is more than one coefficient of vis~osity. '~ 

'' J.  L. Lebowitz and J.  K. Percus, J .  Math.  Phys., 1963,4, 116, 248; A. J .  M. Yang, P. D. Fleming, and 

l 2  T. L. Hill, J .  Chem. Phys., 1959, 30, 1521. 
l 3  S. Chapman and T. G. Cowling, 'The Mathematical Theory of Non-Uniform Gases', University Press, 

Cambridge, 1939; G. C. Maitland, M. Rigby, E. B. Smith, and W. A.  Wakeham, 'Intermolecular Forces', 
University Press, Oxford, 1982. 

J. H. Gibbs, J .  Chem. Phys., 1976, 64, 3732; R. F. Kayser and H. J .  Raveche, to be published. 
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Equilibrium is the state in which these gradients vanish; 

V,U(Y) = 0 V T ( r )  = 0 V . p ( r )  = 0 (2.7) 

These equations imply that, even in a non-uniform system at equilibrium, p and T 
are constant, but not that p is a constant, for the gradient of a tensor can vanish 
without all its components being constant, as we shall see below in the discussion 
of spherical drops of liquids. Thus p and T are simpler and, as we have seen, less 
arbitrary functions than p .  This line of thought could perhaps be followed further, 
for if the molecules are non-spherical then angular momentum is also conserved 
and the pressure becomes an even more complicated p r ~ p e r t y . ’ ~  

3 Local and Non-local Approximations to the Chemical Potential and Free-energy 
Density 
The chemical potential p( r )  and the free-energy density $ ( r )  have formally exact 
expressions that are not practically useful. The crudest approximation to them, that 
of point-thermodynamics, (1.2), and its analogue $ ( r )  = $[p(r) ,T] ,  are adequate 
only when the inhomogenity is weak on the scale of length of 5 .  We need a better 
approximation to treat the interfaces between phases (the most important kind of 
small system), that is, to be able to describe accurately their structure and 
properties at a molecular level. 

The first attempts in this direction, of which that of RayleighI5 is the most 
complete, started with +(r) ,  not $ ( r ) .  He argued that the departure of +(rl) from the 
point-thermodynamic approximation depends on the density of molecules near but 
not at rl,  that is on p(r2) ,  where Ir2 - rl I < 5 .  This density can be obtained from 
a Taylor expansion about r1 ; 

P ( Y 2 )  = P ( h )  + P i 2  ’ V ) P W  + +(.12 * v ) 2 P ( Y l )  + ...  ( 3 4  

The first derivative vanishes on integrating over r 2 ,  leaving only the second-order 
term. This line of argument led Rayleigh to an expression for Q of a planar liquid 
surface of the form 

. w  

(T = m J dzy’(z)* (3.2) 
- W  

where m is the second moment of the attractive part of the intermolecular 
potential, u,, 

Howevei-, the energy density is not an appropriate route to a surface tension, which 
is an excess free energy, cf. (2.5), and Rayleigh’s calculation was repeated 
(apparently independently) by van der WaalsI6 but with $ ( r )  in place of #(r) .  He 
obtained the celebrated ‘square-gradient’ approximation to $(r) ,  

(3.4) 

D. J .  Evans, J. Stat. Phys., 1979, 20, 547. 
l 5  Lord Rayleigh, Phil. Mug., 1892, 33, 209. 
l 6  J. D. van der Waals, Z. Phys. Chem., 1894, 13, 657; English translation in J. Stat. Phps., 1979, 20, 197. 

14 
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where m and the surface tension are again given by (3.3) and (3.2). This result lay 
unused for many years until it was re-derived (again independently) by Cahn and 
Hilliard” in 1958, since when it has been used extensively by Cahn, Widom, Davis, 
Sullivan, Evans, and others, for tackling a wide range of problems such as surface 
wetting and phase transitions, critical and tricritical points, line tension, etc.’’ Its 
simplicity allows it to be used in situations that are complicated at the molecular 
level. The second-order terms on which it is based sometimes appear as second 
derivatives p”(z), and sometimes as squares of first derivatives, p’(z) ’ ,  but the two 
are often thermodynamically equivalent since macroscopic properties require an 
integration over z ,  after which the two are related by an integration by parts, since 
both derivatives are zero except in the interface, 

1 dzp(z)p”(z) = 1 dzp’(z)’ (3.5) 

Let us call this square-gradient form a local approximation since it is less drastic 
than the point-thermodynamic approximation, but still expresses $ ( r )  in terms of 
p ( r )  and its derivatives. The next stage is a non-local approximation* in which the 
difference in properties over the range of the molecular correlations, <, is expressed 
explicitly. This can be generated from a functional expansion of the formally exact 
expression for $ ( r )  already mentioned: 

$ k l )  = +[P(rI)l - W p ( r J  I dr2[p(r2) - P(rl)IC(rl72) (3 .6 )  

where c(r1 , r2)  is the direct correlation function between points 1 and 2, which is 
related to the total correlation function h(r , ,v2)  = g(v, ,v2)  - 1 by the Ornstein- 
Zernike equation 

w . 1 7 2 )  = C(rlJ2) + 1 dr3 C ( Y I 9 r 3 ) P ( ~ 3 ) W 3  J 2 )  (3.7) 

and g(v,,u,)  is the two-body distribution function. A related non-local approxi- 
mation can be obtained by a perturbation expansion and has been called by 
Abraham’ a generalized van der Waals approximation: 

where go is the two-body distribution function in a hypothetical uniform fluid of 
density p ( r l ) ,  over which the attractive potential u, is averaged. The exact 
expression for p(r) ,  (1.3), is also non-local, as is clear from its form. 

* This is the usual n o m e n c l a t ~ r e , ~ . ~ ~ . ~ ~  but Sengers and van Leeuwen4 call (1.2) locul and (3.4) non-locul. 
They do not use (3.6). 

” J .  W. Cahn and J .  E. Hilliard, J .  Chem. Phys.. 1958. 28, 258. 

l 9  J .  A. Barker and J .  R. Henderson, J .  Chem. Phys., 1982, 76, 6303. 
See ref. 3, Chap. 3. 8. and 9. 

J .  K. Percus, in ‘The Liquid State of Matter, Studies in Statistical Mechanics’, Vol. 8, p. 31. ed. 
E. W. Montroll and J .  L. Lebowitz. North-Holland, Amsterdam, 1982. 

*‘  F. F. Abraham, J .  Chem. Phys., 1975. 63, 157, 163; Phys.  Rep. ,  1979, 53, 93. 
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The non-local approximations are closer to the exact results but may contain 
correlation functions, such as c(vl,r2) or g(rl,v2), about which we know little. In a 
planar surface they are functions of three variables, say r 1 2 ,  zl, and z 2 ,  and so much 
more difficult to estimate, even by computer simulation, than the corresponding 
function of one variable in a homogeneous fluid. A square-gradient expansion, or 
local approximation, can be derived from a non-local approximation by a Taylor 
expansion, but leads to a different expression for the coefficient, m, e.g. 

(3.9) 

where c ( r 1 2 )  is the direct correlation function of a uniform, but perhaps hypotheti- 
cal, fluid. This expression and (3.3) are quite similar for a liquid since 
kTc(r , , )  = - u(r12)  is the well-known mean-spherical approximation. 

The distinction between local and non-local approximations is not merely one of 
numerical accuracy but can lead to qualitative differences in systems with attractive 
intermolecular forces that fall off only as an inverse power of r 1 2 .  If the potential 
were of strictly finite range, as for the square-well potential, or if it fell off 
exponentially rapidly with separation, then the gradient expansions such as (3.4) 
are convergent, and the coefficient m and its analogues in higher terms are con- 
vergent integrals (except at the gas-liquid critical point). The potential field outside 
a slab of a condensed phase, solid or liquid, would then also be of finite range or 
would fall off exponentially with distance from the surface. Hence the ‘wings’ of the 
profile of a liquid surface (Figure 2) would approach their asymptotic limits, p’ 
and pg, exponentially. Real potentials, however, are neither finite nor exponential, 
but fall off as r;: (or r;; at extremely large distances that are not relevant here). 
For such potentials m is again finite (except at the critical point) but its higher 
analogues are divergent integrals. The gradient expansion (3.4) is thus, at best, an 
asymptotic expansion. Moreover the potential outside a slab of a condensed phase, 
and hence also the wings of a liquid-gas profile, now falls off only as z - ~ ,  not 
exponentially. The non-local approximations avoid these divergent expansions 
and lead correctly to z - 3  wings.’9s22 The difference between z P 3  and an 
exponential fall off is small numerically, but it is conceptually important, and can 
lead to qualitative differences in the predicted thickness of wetting layers of a 
second liquid at a gas-liquid ~ u r f a c e . ~ ’ - ~ ~  

This distinction between local and non-local expressions needs further 
exploration, since second-order differential equations can generally be converted 
into an integral form and vice versa. Nevertheless it is clear physically that (3.6) 
and (3.8) invoke the properties of the fluid-not-at-v,, in a way that (3.4) does not. 

2 2  P. G. de Gennes, Physique Lett., 1981, 42, L-377. 
2 3  O’D. Kwon, D. Beaglehole. W. W. Webb, B. Widom, J .  W. Schmidt, J.  W. Cahn, M. R.  Moldover, and 

B. Stephenson, P h y s .  Reo. Lett., 1982, 48, 125. 
24 P. Tarazona, M. M. Telo da Gama, and R.  Evans, Mol. Pliys. ,  1983,49, 283. 301. 
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4 Curved Surfaces 
Two scales of length have been used so far, the gravitational length kT/mg which is 
so large as to be of no real interest, and the correlation length 5,  which is also a 
measure of the thickness of a liquid surface at all temperatures, and of the range 
of the intermolecular forces, say lnm,  away from critical points. With curved 
surfaces a third length enters the physics of small systems, the radius of curvature,* 
R,  and the length with which this can be most usefully compared is the capillary 
constant, a, defined as follows. The difference of mass density AaD between two 
phases, c( and p, each composed of species 1, 2, ..., i, ..., of molecular mass 
m,, m,, ..., mi, ... 1s 

The capillary constant aas is given by 

(a”o)2 = 2g”’,/gL\”/j ( 4 4  
It is typically 10- m for a liquid-gas surface, e .g .  3.93 mm for water at 0 “C. If the 
radius of curvature R is large compared with a then the properties of a system are 
controlled by gravity and the surface tension can often be ignored. Thus waves on 
the sea have a wave-length, and so a curvature, large compared with a, and their 
propagation is entirely controlled by gravity. If R is comparable with a then both 
gravity and surface tension are important and from their interplay follow most of 
the conventional methods of measuring surface tension. If R is small compared with 
a then surface tension is dominant and gravity can be ignored. This is the case with 
very short waves, capillary waves, on the surface of a liquid. 

The capillary constant can become large on a laboratory scale if either A or g 
tends to zero. The first limit is achieved in a Plateau tank when the density of two 
liquids is so closely matched that the form of the surface between them is controlled 
by surface tension alone. The second is achieved in free-fall or, for a longer time, in 
space flight where g is typically reduced to lo-’ or less of its value on the earth’s 
surface. 

The mechanical condition of equilibrium in the presence of an external field is 

v - p ( r )  + p(r)v(r )  = 0 (4.3 1 
which reduces to (2.7) if R -g a, that is for very small drops and bubbles. At  a 
spherical surface this condition reduces to28 

* For generality we should consider the two principal radii of a surface of arbitrary curvature, R ,  and R , ,  
but the discussion is restricted to spherical surfaces for which R ,  = R ,  = R ,  since the theory of surfaces 
of arbitrary curvature is, I believe, not yet fully d e ~ e l o p e d . ’ ~  
2 5  Early work in terms of the pressure tensor is discussed in $4.8 of ref. 3. Recent work on the thermo- 

dynamics by L. Boruvka and A.  W. Neumann, J .  Chem. Phys., 1977,66, 5464 and on the statistical 
mechanics by J.  K .  Percus (ref. 20) is critically discussed in refs. 26 and 27 respectively. 

26 J.  S. Rowlinson, 1. Chem. Soc., Faraday Trans. 2, 1983, 79, 77. 
*’ S. J .  Hemingway, J .  S. Rowlinson,and J .  P. R. B. Walton, J .  Chem. SOC.,  Faruday Trans. 2 ,  1983, in press. 
2 8  F. P. Buff, J .  Chem. Phys., 1955,23,419; see also w.8 of ref. 3. Mechanical equilibrium is implied by the 

condition of constant chemical potential; J .  R. Henderson, Mol.  Phys., 1983, 48, 715. 

26 1 



Faraday Lecture-The Molecular Theory of Small Systems 

where p N ( r )  and p T ( r )  are the normal and transverse components at distance r from 
the centre, and n can have any value. By integration of this equation ( n  = 0) from a 
point R" inside phase c1 to R P  in phase p, we have 

The excess pressure inside a drop of phase a, from obvious mechanical arguments 
that go back to Laplace, is related to the tension in the interface and to the radius 
R ,  at which that tension acts; 

p" - p P  = 2a/R, 

Thus the surface of tension, or here, the radius of tension, plays a more important 
role in the properties of curved than it does for planar surfaces. 

Since (pa  - p P )  is the difference between the (scalar) pressure in two 
homogeneous phases it is invariant to the choice of the form of the pressure tensor 
in the surface. Hence the ratio o/R, is also invariant, as is the equation of 
mechanical equilibrium (4.4) from which it is derived, and the integral in (4.5). 
Preliminary results for (pN)IK and ( P ~ ) , ~  by computer simulation are shown in 
Figure 4, but greater accuracy is needed before (pN)H and (pT)H can be found, and 

(4.6) 
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Figure 4 The density, p, and the normal component of the pressure, PN(r) as obtained at 
t = 0.83 for a drop of liquid of 2048 molecules. The transverse component pT(r )  is obtained from 
(4.4) with n = 2, and is shown by  the points. Both p N  and p r  are for the Irving-Kirkwood 
convention 

so it is too early to say much about the changes in the apparent values of R, 
consequent upon changes in the choice of p .  

The difficulty of obtaining R,  from mechanical arguments, uia pN and p T ,  can be 
overcome by appealing to thermodynamic and statistical  argument^.^' Tolman3' 

2 9  S. J. Hemingway, J. R. Henderson, and J. S. Rowlinson, Faruday Symp. Chem. Sac., 1981, 19, 33. 
30 R. C. Tolman, J .  Chem. Phys., 1949, 17, 118, 333. 
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showed that the change of G with curvature can be expressed 

where G is the tension of a surface of equimolar radius Re, and G, that of the planar 
surface. (Tolman, in fact, obtained also higher terms in l/R:, etc., but we have 
shown that these are without physical m e a ~ ~ i n g . ~ . ~ ~ )  The tension of the curved 
surface can be expressed also in terms of an integral over the direct correlation 
function and so the consistency of (4.7) 29 This route to R,  avoids the 
uncertainty of that via the pressure tensor, although the imprecision there is 
probably not very serious since (zJIK - (zJH is only about 1/6 of 6. 

Since 6 is only of the order of the thickness of the surface, or of the range of the 
intermolecular forces, say lnm,  it follows that c differs from om only for very 
small drops and bubbles; a radius of m is needed to detect a change in G 

of 1%. The measurements of Fisher and I~raelachvili~' come close to this size but 
have not yet revealed unambiguously any change from 6,. 

5 Line Tension 
If we place a trace of a light hydrocarbon on a clean water surface it spreads over 
it as a continuous film. A heavier hydrocarbon (C ,  and above32) does not spread 
but forms a set of liquid lenses on the water surface. A hydrocarbon of about the 
critical length can be made to go from the spreading or wetting regime to the 
non-wetting by lowering the temperature. Such transitions have been much studied 
lately, experimentally by e l l i p~omet ry ,~~  and t h e ~ r e t i c a l l y ~ ~  with a square-gradient 
approximation for $, but it is the thermodynamics of the non-wetting regime that 
is the subject of this section, since it reveals a further type of inhomogenity and 
its consequence-namely a line tension. 

The free-energy of two phases, 01 and b, separated by a 01b interface is not 
(V"i,b" + I/@$@), where I/" and V @  are the volumes of the phases measured to the 
equimolar dividing surface, but differs from this sum by a term proportional to 
the interfacial area, AaBoUP. Similarly if three phases meet in three surfaces, and if the 
three surfaces meet in a line, then the free-energy is not to be accounted for solely 
by the volume and surface terms but includes a term proportional to the length 
of three-phase contact POy. That is, the line tension, f P v ,  is defined by 

( 5 4  F = jq,= + v/a,,/,/a + y y + u  + ~ a P , a / a  + A a y a a u  + ~ / a y ~ P y  + p b T ~ / a u  

Unlike surface tension, which is always positive, the line tension3' can have 
either sign. 

In principle we could go one stage further, and envisage three 5nes of phase- 
contact meeting at a point, and giving rise to a point-contribution (it could scarcely 

3 1  L. R. Fisher and J. N. Israelachvili, Nature, 1979, 277, 548; Chem. Phys. Lett., 1980, 76, 325. 
32 F. Hauxwell and R. H. Ottewill, J. Colloid Interface Sci., 1970, 34, 473. 
3 3  D. Beaglehole, J .  Phys. Chem., in press. 
34  See, e.g. reference 3, $8.5. 
3 5  Reference 3, 48.6. 
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be called a tension) to the free energy. However, volume contributions to F are of 
order N ,  surface contributions of order N 2 / 3 ,  line contributions of order N1I3, and 
point contributions of order N o .  Such a size-independent contribution would be 
swamped by other terms arising from the finite size of a ~ y t e m , ~ ~  e.g. restrictions on 
the phonon spectrum or its equivalent in a liquid, which contribute terms of the 
order of In N .  

A further length of interest in the physics of small systems is therefore the ratio 
I T / O  1.  For soap solutions o is about 5.10- N m- and experimental  value^^^.^^ of 
T range from - loV9 N to + loT9 N. The ratio r/a is therefore 20nm or less, 
according to the size ofz, and it is only for very small lenses or beads that the effects 
of line tension are important; (z/aR,) is at most 1/20 for a lens of 1 pm diameter. 
Between 1 pm and 1 mm we can treat capillary problems by surface tension alone, 
ignoring gravity on the one hand, and line tension on the other. The general 
conclusion that (r/a) is of the order of c, the correlation length, is supported by 
arguments based on the structure of the pressure tensor3* near a line of contact, on 
an analysis3’ in terms of the square-gradient approximation for $, and from 
statistical mechanical  argument^.^' So the line tension of soap solutions, where 5 
is large, is probably an upper limit; for simple liquids I T  I is probably no more 
than lo-’! N. 

There are, however, physical systems of interest of dimensions smaller than 1 pm, 
and for which line tension may have to be considered. Thus thin soap films 
(Newton’s black films) are less than 10-’m thick. The films that surround the 
drops in micro-emulsions, and lipid bilayers in biological membranes are also 
structures with a characteristic length of 10-8m or less. Nucleation is a 
phenomenon in which surface properties are important on scale of length as 
small as m. 

The effect of curvature on line tension can be expressed by an equation26 similar 
to Tolman’s equation for surface tension, but the length E that is the analogue of 6 
in (4.7) is again of the order of magnitude of 1 nm. Any change of z with curvature 
is therefore probably undetectable. 

6 Conclusions 
Much more remains to be done. The field covered in this survey has been restricted 
to the simplest types of system, for I have scarcely touched on the problems of 
aerosols, foams, colloids, emulsions, cells, membranes etc., and ignored the fact that 
many of their important properties arise from the presence of electrolytes. 
Dielectric problems on a micro-scale, and transport properties are discussed by 
Alder et What I have attempted to do, however, is to describe the theoretical 
foundations on which the discussion of the properties of these systems must be 

36 I am indebted to Dr. J. C. Wheeler for a discussion on this point. 
37 D. Platikanov, M. Nedyalkov, and A. Scheludko, J .  Colloid Interface Sci., 1980,75,612; D. Platikanov, 

’* F. P. Buff and H. Saltsburg J .  Chem. Phys., 1957, 26, 23. 
3 9  J. Kerins and B. Widom, J .  Chem. Phys., 1982, 77, 2061. 
40 P. Tarazona and G .  Navascues, J .  Chem. Phys., 1981, 75, 3114. 
41  B. J.  Alder, W. E. Alley, and E. L. Pollack, Ber. Bunsenges. Phys. Chem., 1981, 85, 944. 

M. Nedyalkov, and V. Nasteva, J .  Colloid Interface Sci., 1980, 75, 620. 
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based, and to describe recent progress in the building of theoretically sound, if so far 
simplified structures on those foundations. The aim, as Maxwell4* said of classical 
thermodynamics, is to create ‘a science with secure foundations, clear definitions, 
and distinct boundaries’. 

I have Iaid particular stress on the three major scales of length: 

the gravitational length kT/mg - 104m 

the capillary constant a - 10- m 

and the correlation length 5, which, for good reasons, is also equal to the thickness 
of an interface, 1, and generally equal also to the range of the intermolecular 
potential, d,  to the separation of z ,  and z,(6), and, finally, to the ratio I z/a I. Thus 

( - 1 - d - 6 -  I ~ / a l  - 10-9m 

The physics of small systems depends on where, with respect to this triple hierarchy, 
the radius of curvature, or other measure of smallness, lies. Moreover, the shortest 
of these three distances, < etc., is the smallest distance at which the methods of 
classical thermodynamics can be used. For systems or inhomogenitics smaller than 
5, thermodynamics and statistical mechanics lose their meaning. 
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42 J. C.  Maxwell, quoted by J. W. Gibbs, ‘Collected Works’, Vol. 2, Longmans, New York, 1928, p. 262. 
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